메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
최용 (삼성서울병원 핵의학과, 삼성생명과학연구소 임상의학연구센터, 성균관대학교 의과대학) 김준영 (삼성서울병원 핵의학과, 삼성생명과학연구소 임상의학연구센터, 성균관대학교 의과대학) 임기천 (삼성서울병원 핵의학과, 삼성생명과학연구소 임상의학연구센터, 성균관대학교 의과대학) 김종호 (삼성서울병원 핵의학과, 삼성생명과학연구소 임상의학연구센터, 성균관대학교 의과대학) 우상근 (삼성서울병원 핵의학과, 삼성생명과학연구소 임상의학연구센터, 성균관대학교 의과대학) 이경한 (삼성서울병원 핵의학과, 삼성생명과학연구소 임상의학연구센터, 성균관대학교 의과대학) 김상은 (삼성서울병원 핵의학과, 삼성생명과학연구소 임상의학연구센터, 성균관대학교 의과대학) 최연성 (삼성서울병원 핵의학과, 삼성생명과학연구소 임상의학연구센터, 성균관대학교 의과대학) 김병태 (삼성서울병원 핵의학과, 삼성생명과학연구소 임상의학연구센터, 성균관대학교 의과대학)
저널정보
대한핵의학회 대한핵의학회지 대한핵의학회지 제33권 제3호
발행연도
1999.1
수록면
316 - 326 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
목적: N-13 암모니아 PET 동적영상에 포함된 순수 한 혈액풀 입력함수와 심근 조직함수를 추출하며 각 조직 인자영상을 생성하는 인자분석 방법을 개발하고자 하였다. 또한 인자분석 방법으로 추출된 입력함수와 조직함수를 사용하여 혈류량을 측정하여 구현한 인자분석 방법의 정확도와 유용성을 고찰하였다. 대상 및 방법: 다섯 명의 관상동맥질환 환자에 20 mCi N-13 암모니아를 안정상태와 부하상태에서 주사한 후, 23분간 26프레임의 PET 동적영상을 얻었다. 인자분석을 수행하기 위해 첫째, N-13 암모니아 PET 동적영상을 3차원 행렬화 한 후, 부분영상을 추출하여 딕셀을 생성, 규격화하였다. 두 번째 주 대각성분분석 단계에서는 공분산행렬을 계산하여 인자부하량을 구하며, 세 번째 단계에서는 인자부하량이 양의 구속조건을 만족할 때까지 인자함수를 사갈 회전시켰다. 네 번째 단계에서는 인자영상과 시간-방사능 곡선을 추출하였다. 인자분석 방법의 효율성과 정확성을 검증하고자 인자분석과 관심영역설정 방법으로 구한 혈액풀 입력함수의 곡선 아래 면적을 비교하고, 두 가지 방법으로 구한 입력함수와 조직함수를 이용하여 심근 혈류량을 측정하여 선형 회귀분석하였다. 결과: 관심영역 설정 방법과 개발된 인자분석 방법을 이용하여 구한 혈액풀 입력함수의 $0{\sim}1$분 사이의 평균 곡선 아래 면적 비는 1.02, $0{\sim}2$분 사이는 0.98, $1{\sim}2$분 사이는 0.86이었다. 또한 인자분석과 관심영역 설정 방법으로 얻은 입력함수와 관심영역 설정 방법으로 얻은 조직함수로 구한 심근 혈류량의 선형 회귀곡선 기울기는 0.91, 상관계수는 0.82로 서로 잘 일치하였다. 결론: N-13 암모니아 PET 동적영상을 인자분석 하는 방법을 구현하여 각 조직 인자영상과 이에 대응하는 시간-방사능 곡선을 추출하였으며, 인자분석과 관심영역 설정 방법으로 얻은 혈액풀 입력함수가 서로 잘 일치됨을 검증하였다. 또한, 인자분석 방법과 관심영역 설정방법으로 얻은 시간-방사능 곡선으로 구한 심근 혈류량 값들이 서로 좋은 상관관계를 나타내는 것으로 관찰되어 인자분석 방법으로 추출된 혈액풀 입력함수와 심근 조직함수가 순수한 생리적 함수들과 잘 일치된다고 판단할 수 있었다. 그러므로 N-13 암모니아 PET과 인자분석 방법을 이용하면 혈액 채취, 관심영역 설정, 흘러넘침 보정없이 심근 혈류량을 비침습적으로 간단하고 정확하게 정량화 할 수 있다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0