메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
신현석 (부산대학교 토목공학과) 박무종 (한서대학교 토목공학과)
저널정보
한국수자원학회 한국수자원학회논문집 한국수자원학회논문집 제32권 제1호
발행연도
1999.1
수록면
3 - 13 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
본 연구에서는 공간 분포의 해석을 위하여 일반적으로 사용되어 오던 Thiessen 또는 Kriging 법들을 대체할 수 있는 새로운 모형인 SANN(Spatial-Analysis Neural-Network)을 소개한다. 이 모델은 신경망 기법을 이용한 비매개 변수법의 일종으로 미측정 기점의 평균값 뿐만 아니라 분산, 왜도 등의 고차 통계치를 제공하여 준다. 또한 어떤 기점에서의 공간변수의 값이 그 심각도에 따른 미리 지정된 여러 분류들 중 각각의 분류에 속할 확률값과 전체 공간을 각 분류에 따라 가장 최적하게 분류경제(class boundary)를 선정하여줄 수 있는 Bayesian 계급분류기(Classifier)를 제공하는 의사결정(decision-making) 역할도 수행할 수 있다. 본 연구에서는 제안된 SANN모형의 외삽기(interpolator)를 사용하여 관측 기점의 연평균 강우량을 대상 유역 전체의 공간적으로 분포시키고 또한 각 지점의 예측 오류를 산정하며, Bayesian 분류기를 사용하여 대상유역을 가장 적절하게 건조, 보통, 습윤 지역으로 분류하는 방법을 제시하여 본다. 본 연구에서는 39개 강우 계측 지점을 이용하여 우리나라의 연평균 강우의 공간 해석에 응용하여 본다. 결과적으로 연평균 강우량의 공간 분포, 표준편차, 그리고 확률도를 얻었다. 더불어 우리나라 전역을 건조, 보통, 습윤 지역으로 분류하여 보았다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0