메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
홍선표 (시립인천전문대학 제어계측공학과)
저널정보
한국음향학회 한국음향학회지 한국음향학회지 제16권 제2호
발행연도
1997.1
수록면
58 - 65 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
본 논문에서는 시계열 image data를 안정되고 높은 정확도로 분류할 수 있는 자동분류법을 제안하였다. 제안한 방법은 대상 영역에 관한 분류도가 기존재하던 가, 아니면 최소한 시계열 image data 중 어느 한 image data가 분류되어 있다고 하는 전제조건에 그 기초를 두고 있다. 분류도는 training area를 선정하기 위라여 사용하는 기준주제도로 사용되어진다. 제안한 방법은 1)기준주제도를 사용한 training data의 추출, 2)taining data의 균질성에 의거한 변화화소의 검출, 3)검출된 변화화소에 대한 clustering, 4)training data의 재구성, 5)maximum likelihood classifier와 같은 판별법에 의한 분류 등 5개의 단계로 구성된다. 제안한 방법의 성능을 정량적으로 평가하기 위하여 4개의 시계열 Landsat TM image data를 제안한 방법과 숙련된 operator가 필요한 기존의 방법으로 각각 분류하여 비교 검토하였다. 그 결과, 기존의 방법으로는 숙련된 operator가 필요하고, 분류도를 얻기까지 수일이 소요되는 데 반하여, 제안한 방법으로는 숙련된 operator 없이, 신뢰성 있는 분류도를 수 시간 내에 자동으로 얻을 수 있었다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0