메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Yun, MIn-Young (Department of Computer Engineering Sungkyul University)
저널정보
한국전산응용수학회 The Korean journal of computational & applied mathematics, 한국전산응용수학술지 Series A The Korean journal of computational & applied mathematics, 한국전산응용수학술지 Series A 제4권 제2호
발행연도
1997.1
수록면
513 - 528 (16page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
A sort sequence $S_n$ is a sequence of all unordered pairs of indices in $I_n\;=\;{1,\;2,v...,\;n}$. With a sort sequence Sn we assicuate a sorting algorithm ($AS_n$) to sort input set $X\;=\;{x_1,\;x_2,\;...,\;x_n}$ as follows. An execution of the algorithm performs pairwise comparisons of elements in the input set X as defined by the sort sequence $S_n$, except that the comparisons whose outcomes can be inferred from the outcomes of the previous comparisons are not performed. Let $X(S_n)$ denote the acverage number of comparisons required by the algorithm $AS_n$ assuming all input orderings are equally likely. Let $X^{\ast}(n)\;and\;X^{\circ}(n)$ denote the minimum and maximum value respectively of $X(S_n)$ over all sort sequences $S_n$. Exact determination of $X^{\ast}(n),\;X^{\circ}(n)$ and associated extremal sort sequenes seems difficult. Here, we obtain bounds on $X^{\ast}(n)\;and\;X^{\circ}(n)$.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0