메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술대회자료
저자정보
Blanco, Jose A. (Instituto de produccion Animal, Facultad de Ciencias Agrarias, Universidad Austral) Alomar, Daniel J. (Instituto de produccion Animal, Facultad de Ciencias Agrarias, Universidad Austral) Fuchslocher, Rita I. (Instituto de produccion Animal, Facultad de Ciencias Agrarias, Universidad Austral)
저널정보
한국근적외분광분석학회 한국근적외분광분석학회 학술발표회 한국근적외분광분석학회 2001년도 NIR-2001
발행연도
2001.1
수록면
1,266 - 1,266 (1page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Pasture composition, an important attribute determining sward condition and value, is normally assessed by hand separation, drying and measuring weight contribution of each species in the mixture. This is a tedious, time and labour consuming procedure. NIRS has demonstrated the potential for predicting botanical composition of swards, but most of the work has been carried out on dry samples. The aim of this work was to evaluate the feasibility of developing NIR models for predicting the white clover and ryegrass content in fresh or dry mixtures artificially prepared from pure samples of both species. Mixtures from pure stands of white clover(Trifolium repens) and perennial ryegrass (Lolium perenne) were prepared with different proportions (0 to 100%) of each species (fresh weight). A total of 55 samples were made (11 mixtures,5 cuts). Spectra (400 to 2500 nm) were taken from fresh chopped (rectangular cuvettes, transport sample module) samples, in a NIR Systems 6500 scanning monochromator controlled by the software NIRS 3 (Infrasoft International), which was also utilized for calibration development. Different math treatments (derivative order, subtraction gap and smooth segment) and a scatter correction treatment of the spectra (SNV and Detrend) were tested. Equations were developed by modified partial least squares. Prediction accuracy evaluated by cross-validation, showed that percentage of clover or ryegrass, as contribution in dry weight, can be successfully percentage of clover or ryegrass, as contribution in dry weight, can be successfully predicted either on fresh or dried samples, with equations developed by different math treatments. Best equations for fresh samples were developed including a first, second, or third derivative, whereas for dry samples best equations included a second or third derivative. Standard errors of ross validation were about 6% for fresh and 3.6% for dry samples, Coefficient of determination of cross validation (1-VR) were over 0.95 times the value of SECV for fresh samples and over 8 times the value of SECV for dry samples. Scatter correction (SNV and Detrend) in general improved prediction accuracy. It is concluded more precise on dried and ground samples, it can be used with an acceptable error level and less time and labour, on fresh samples.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0