메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김희준 (부산수산대학교 응용지질학과)
저널정보
대한자원환경지질학회 자원환경지질 자원환경지질 제28권 제4호
발행연도
1995.1
수록면
425 - 431 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Genetic algorithms are so named because they are analogous to biological processes. The model parameters are coded in binary form. The algorithm then starts with a randomly chosen population of models called chromosomes. The second step is to evaluate the fitness values of these models, measured by a correlation between data and synthetic for a particular model. Then, the three genetic processes of selection, crossover, and mutation are performed upon the model in sequence. Genetic algorithms share the favorable characteristics of random Monte Carlo over local optimization methods in that they do not require linearizing assumptions nor the calculation of partial derivatives, are independent of the misfit criterion, and avoid numerical instabilities associated with matrix inversion. An additional advantage over converntional methods such as iterative least squares is that the sampling is global, rather than local, thereby reducing the tendency to become entrapped in local minima and avoiding the dependency on an assumed starting model.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0