메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술대회자료
저자정보
Na, Young-Nam (Agency for Defense Development) Shim, Tae-Bo (Agency for Defense Development) Chang, Duck-Hong (Agency for Defense Development) Kim, Chun-Duck (Pukyong National Univ.)
저널정보
한국음향학회 한국음향학회 학술발표대회 한국음향학회 1997년도 영남지회 학술발표회 논문집 Acoustic Society of Korean Youngnam Chapter Symposium Proceedings
발행연도
1997.1
수록면
27 - 34 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
In this study , we tried to test the classification performance of a neural netow and thereby to examine its applicability to the signals distorted by a shallow water einvironment . We conducted an acoustic experiment iin a shallow sea near Pohang, Korea in which water depth is about 60m. The signals, on which the network has been tested, is ilinear frequency modulated ones centered on one of the frequencies, 200, 400, 600 and 800 Hz, each being swept up or down with bandwidth 100Hz. we considered two transforms, STFT(short-time Fourier transform) and PWVD (pseudo Wigner-Ville distribution), form which power spectra were derived. The training signals were simulated using an acoutic model based on the Fourier synthesis scheme. When the network has been trained on the measured signals of center frequency 600Hz,it gave a little better results than that trained onthe simulated . With the center frequencies varied, the overall performance reached over 90% except one case of center frequency 800Hz. With the feature extraction techniques(STFT and PWVD) varied,the network showed performance comparable to each other . In conclusion , the signals which have been simulated with water depth were successully applied to training a neural network, and the trained network performed well in classifying the signals distorted by a surrounding environment and corrupted by noise.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0