메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술대회자료
저자정보
김상훈 (한국전자통신연구원, 음성언어팀) 박준 (한국전자통신연구원, 음성언어팀) 이영직 (한국전자통신연구원, 음성언어팀)
저널정보
한국음향학회 한국음향학회 학술발표대회 한국음향학회 2000년도 하계학술발표대회 논문집 제19권 1호
발행연도
2000.1
수록면
75 - 78 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
본 논문은 자연스러운 합성음 생성을 위한 끊어 읽기 강도 예측에 관한 것으로, 문장에 대한 품사열이 주어졌을 때 Posteriori 확률을 최대화하는 끊어 읽기 강도를 비터비 디코딩으로 예측한다. 훈련용 데이터는 여성화자 1인이 발성한 2,100 문장이며, 음성 데이터로부터 휴지길이(pause)에 따라 끊어 읽기 강도를 2단계로 할당하고, 텍스트에서는 30개의 품사 태그 심볼을 이용하여 형태소분석 및 태깅을 수행하였다. 관측확률은 3개 연속하는 품사열이 발생할 확률로 하고 끊어 읽기 강도 천이확률은 bigram으로 했을 때, cross validation 방법으로 성능 평가를 수행하였다 평가결과, 훈련데이타에 대해서는 $89.7\%$, 테스트 데이터에 대해서는 $84.9\%$의 예측정확률을 보였다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0