메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술대회자료
저자정보
한학용 (동아대학교 전자공학과) 김상범 (섬유기능대학 컴퓨터공학과) 김주성 (동아대학교 전자공학과) 김수훈 (동아대학교 전자공학과) 허강인 (동아대학교 전자공학과)
저널정보
한국음향학회 한국음향학회 학술발표대회 한국음향학회 1999년도 학술발표대회 논문집 제18권 2호
발행연도
1999.1
수록면
71 - 76 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
본 논문에서 제안한 예측형 RBFN(Radial Basis Function Network)은 HMM과 신경망을 결합한 하이브리드 구조이다. 이 신경망은 HMM으로 추정한 확률분포 파라미터를 사용하여 중간층의 활성화 함수의 출력을 결정하고, 중간층과 출력층의 연결강도만 네트워크 내에서 학습한다. 그리고 HMM으로 추정한 확률분포 파라미터는 두 가지 방법으로 예측형 RBFN에 이용하였다. 첫 번째는 HMM의 각 상태의 혼합수 만큼의 중간층 유니트를 주는 방법이고, 두 번째는 HMM의 혼합수$\times$출력분포수 만큼의 중간층 유니트를 주는 방법이다. 실험결과, 예측형 RBFN은 다른 방법들의 결과보다 $4.5\~6.5\%$ 저하된 결과를 보였지만 다른 신경망에 비해서 학습 반복 횟수를 작게할 수 있었으며 전체 학습시간을 대폭 단축할 수 있었다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0