메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술대회자료
저자정보
박정하 (홍익대학교 토목공학과) 조희대 (미 듀베리사 수자원부) 김동균 (홍익대학교 토목공학과)
저널정보
한국수자원학회 한국수자원학회 학술발표회 한국수자원학회 2017년도 학술발표회
발행연도
2017.1
수록면
161 - 161 (1page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
본 연구는 효율적인 매개변수 추정 방법인 Isolated-Speciation Particle Swarm Optimization(ISPSO)와 불확실도 분석 기법인 GLUE를 결합한 ISPSO-GLUE의 개념을 도입하였다. 임의 매개변수 추출을 방식인 GLUE 기법과 ISPSO-GLUE와의 효율성 비교를 위해 분포형 강우-유출모형인 TOPMODEL에 적용하였으며, 추정된 매개변수에 대한 모의 유량치를 이용하여 성능을 비교하였다. 연구대상지는 Texas의 $1000{\times}2000km^2$ 크기 내외의 두 유역을 택하였으며, 2002-2007년을 보정기간으로 하고, 2008-2013년을 검증기간으로 설정하였다. 불확실도 분석에 10개의 TOPMODEL 매개변수를 이용하고, 우도함수로는 Nash-Sutcliffe(NS) Coefficient이용하여 0.6이상 기준으로 행동모형을 구분하였다. 분석 결과 모수 추정성능면에서, 누적 최대 NS 값과 행동 모형의 개수는 전반적으로 ISPSO-GLUE에서 큰 값을 보였으나, 불확실도 구간에 속하는 관측치는 GLUE에서 더 높은 경향을 보였다. 이는 ISPSO-GLUE의 편향된 모수 추정으로 불확실도 구간이 작아지며, 포함되는 관측치가 GLUE에 비하여 적게 되는 것으로 확인되었다. ISPSO-GLUE의 개선을 통하여 TOPMODEL에 대한 적용성을 증진시키고, 값비싼 수문모형에 대한 매개변수 추정에 더 큰 효과를 가져올 것으로 기대된다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0