메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술대회자료
저자정보
Park, Chang-Beom (WatchVision, Inc.) Lee, Dong-Hwan (Department of Computer Science and Engineering, Korea University) Lee, Seong-Whan (Department of Computer Science and Engineering, Korea University, Interdisciplinary Graduate Program in Bioinformatics, Korea University)
저널정보
한국생물정보시스템생물학회 한국생물정보시스템생물학회 학술대회 한국생물정보시스템생물학회 2003년도 제2차 연례학술대회 발표논문집
발행연도
2003.1
수록면
170 - 177 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Gene expression data are the quantitative measurements of expression levels and ratios of numberous genes in different situations based on microarray image analysis results. The process to draw meaningful information related to genomic diseases and various biological activities from gene expression data is known as gene expression data analysis. In this paper, we present a hierarchical clustering method of gene expression data based on self organizing map which can analyze the clustering result of gene expression data more efficiently. Using our proposed method, we could eliminate the uncertainty of cluster boundary which is the inherited disadvantage of self organizing map and use the visualization function of hierarchical clustering. And, we could process massive data using fast processing speed of self organizing map and interpret the clustering result of self organizing map more efficiently and user-friendly. To verify the efficiency of our proposed algorithm, we performed tests with following 3 data sets, animal feature data set, yeast gene expression data and leukemia gene expression data set. The result demonstrated the feasibility and utility of the proposed clustering algorithm.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0