메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술대회자료
저자정보
저널정보
한국전산응용수학회 한국전산응용수학회 학술발표회 한국전산응용수학회 2003년도 KSCAM 학술발표회 프로그램 및 초록집
발행연도
2003.1
수록면
9 - 9 (1page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Let $\Omega$ be a bounded, open, and polygonal domain in $R^2$ with re-entrant corners. We consider the following Partial Differential Equations: $$(I-\nabla\nabla\cdot+\nabla^{\bot}\nabla\times)u\;=\;f\;in\;\Omega$$, $$n\cdotu\;0\;0\;on\;{\Gamma}_{N}$$, $${\nabla}{\times}u\;=\;0\;on\;{\Gamma}_{N}$$, $$\tau{\cdot}u\;=\;0\;on\;{\Gamma}_{D}$$, $$\nabla{\cdot}u\;=\;0\;on\;{\Gamma}_{D}$$ where the symbol $\nabla\cdot$ and $\nabla$ stand for the divergence and gradient operators, respectively; $f{\in}L^2(\Omega)^2$ is a given vector function, $\partial\Omega=\Gamma_{D}\cup\Gamma_{N}$ is the partition of the boundary of $\Omega$; nis the outward unit vector normal to the boundary and $\tau$represents the unit vector tangent to the boundary oriented counterclockwise. For simplicity, assume that both $\Gamma_{D}$ and $\Gamma_{N}$ are nonempty. Denote the curl operator in $R^2$ by $$\nabla\times\;=\;(-{\partial}_2,{\partial}_1$$ and its formal adjoint by $${\nabla}^{\bot}\;=\;({-{\partial}_1}^{{\partial}_2}$$ Consider a weak formulation(WF): Find $u\;\in\;V$ such that $$a(u,v):=(u,v)+(\nabla{\cdot}u,\nabla{\cdot}v)+(\nabla{\times}u,\nabla{\times}V)=(f,v),\;A\;v{\in}V$$. (2) We assume there is only one singular corner. There are many methods to deal with the domain singularities. We introduce them shortly and we suggest a new Finite Element Methods by using Singular representation for the solution.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0