메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
이재영 (현대모비스) 최두일 (현대모비스) 이성구 (현대모비스) 이재환 (현대모비스)
저널정보
한국자동차공학회 한국자동차공학회 춘계학술대회 2020 한국자동차공학회 춘계학술대회
발행연도
2020.7
수록면
450 - 453 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The number of controllers fitted continues to increase as the functional requirements of the vehicle become more advanced. Controller area network (CAN), CAN with flexible data rate and Ethernet are used to exchange information between controllers. Central communication unit (CCU) was developed to manage the entire network and the information transmission between hybrid networks. CCU is capable of connecting the vehicle"s internal and external networks using modems as well as the internal network. Therefore, vehicle to everything (V2X), over the air (OTA) and vehicle remote control functions can also be fused. The difficulty of system evaluation also increases because the functions of CCU become more complex. CCU is connected to all communication networks in the vehicle and receives hundreds of inputs via communication. If only certain signal values are monitored, it is easy to know whether they are normal or not. However, it is difficult to intuitively check whether the output values are normal when the entire input changes at the same time. In this paper, we propose a CCU automation assessment reinforcement method based on generative adversarial neural network (GAN) to overcome the limitations of rulebased system evaluations. The proposed system uses time series GAN to generate input signals similar to the actual vehicle. In addition, abnormality detection method is used to determine probability of abnormalities in CCU. To verify the proposed method, by using signals acquired from actual vehicles, an experiment is conducted to determine if there are any new problems by regenerating the input signal of CCU. It improves CCU system evaluation reliability since it increases test coverage a lot.

목차

Abstract
1. 서론
2. 방법
3. 실험결과
4. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0