메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Alwin Poulose (Kyungpook National University) Dong Seog Han (Kyungpook National University)
저널정보
한국방송·미디어공학회 한국방송미디어공학회 학술발표대회 논문집 한국방송·미디어공학회 2020 하계학술대회
발행연도
2020.7
수록면
595 - 598 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
An indoor localization system that uses Wi-Fi RSSI signals for localization gives accurate user position results. The conventional Wi-Fi RSSI signal based localization system uses raw RSSI signals from access points (APs) to estimate the user position. However, the RSSI values of a particular location are usually not stable due to the signal propagation in the indoor environments. To reduce the RSSI signal fluctuations, shadow fading, multipath effects and the blockage of Wi-Fi RSSI signals, we propose a Wi-Fi localization system that utilizes the advantages of Wi-Fi RSSI heat maps. The proposed localization system uses a regression model with deep convolutional neural networks (DCNNs) and gives accurate user position results for indoor localization. The experiment results demonstrate the superior performance of the proposed localization system for indoor localization.

목차

Abstract
1. Introduction
2. Proposed Wi-Fi RSSI Heat Map based localization System using DCNNs
3. Experiment and Result Analysis
4. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-567-001083310