메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
김승환 (성균관대학교) 박은수 (성균관대학교) 굴람 무즈타바 (가천대학교) 류은석 (성균관대학교)
저널정보
한국방송·미디어공학회 한국방송미디어공학회 학술발표대회 논문집 한국방송·미디어공학회 2020 하계학술대회
발행연도
2020.7
수록면
431 - 434 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 이미지 인식을 위한 Convolutional Neural Network(CNN) 모델의 경량화에 관한 연구가 활발하게 이루어지고 있다. 그중 양자화는 모델을 구성하는 가중치의 크기를 낮추는 방법이다. 기존의 CNN 모델에서 가장 큰 비중을 하는 Fully Connected Layer(FCL)는 내부적으로 32 Bit의 실수 행렬로 표현된다. 본 논문에서는 미리 학습된 실수 가중치를 더 작은 비트의 정수 행렬로 양자화한다. 양자화된 행렬에 대해서 영상 압축 등에서 사용하는 Discrete Cosine Transform(DCT)을 통해 주파수 영역으로 변환한 후 고주파 영역을 생략하는 손실압축 방법을 제안한다. 실험을 통해 그 과정에서 손실에 따른 정확도의 변화를 나타낸다.

목차

요약
1. 서론
2. 관련 연구
3. 구현내용 및 실험
4. 실험 결과
5. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-567-001083805