메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
신동선 (부산대학교) 박병철 (부산대학교) 임채옥 (부산대학교) 오상진 (부산대학교) 김기용 (부산대학교) 신성철 (부산대학교)
저널정보
대한조선학회 대한조선학회 논문집 대한조선학회논문집 제57권 제4호(통권 제232호)
발행연도
2020.8
수록면
191 - 197 (7page)
DOI
10.3744/SNAK.2020.57.4.191

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
Pipe routing is a important part of the whole design process in the shipbuilding industry. It has a lot of constraints and many tasks that should be considered together. Also, the result of this stage affects follow-up works in a wide scope. Therefore, this part requires skilled designers and a lot of time. This study aims to reduce the workload and time during the design process by automating the pipe route design on initial stage. In this study, the reinforcement learning was used for pipe auto-routing. Reinforcement learning has the advantage of dynamically selecting routes, unlike existing algorithms. Therefore, it is suitable for the pipe routing design in ship design process which is frequently modified. At last, the effectiveness of this study was verified by comparing pipelines which were designed by piping designer and reinforcement learning results.

목차

1. 서론
2. 강화학습 및 학습 조건
3. 학습 결과
4. 결론
References

참고문헌 (8)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0