메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박성현 (Incheon National University) 강석훈 (Incheon National University)
저널정보
한국전기전자학회 전기전자학회논문지 전기전자학회논문지 제24권 제2호
발행연도
2020.6
수록면
143 - 151 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Continuous Learning 환경에서 인공 신경망의 학습이 진행됨에 따라 이전에 학습했던 데이터의 정보를 잊는 Catastrophic Forgetting 현상이 있다. 서로 다른 Domain을 갖는 데이터 사이에서 쉽게 발생한다. 이 현상을 제어하기 위해 신경망의 출력 분포를 통해 이전에 학습된 데이터와 새로 학습할 데이터들의 관계를 측정하는 방법과 이 측정값을 사용하여 Catastrophic Forgetting 현상을 완화하는 방법을 제시한다. 평가를 위해 MNIST, EMNIST 데이터를 사용하였고 실험 결과, 이전 데이터에 대한 정확도가 평균적으로 약 22.37% 향상되었다.

목차

Abstract
요약
Ⅰ. 서론
Ⅱ. 본론
Ⅲ. 결론
References

참고문헌 (10)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0