메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
서종관 (I-ON communications) 이태일 (I-ON communications) 이휘성 (I-ON communications) 박점배 (I-ON communications)
저널정보
한국전기전자학회 전기전자학회논문지 전기전자학회논문지 제24권 제2호
발행연도
2020.6
수록면
32 - 37 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
태양광 발전은 특성상 간헐성과 불확실성이 항상 존재하기 때문에 정확한 예측은 어려우며, 실시간 발전량 진단을 위한 이상감지 기술이 중요하다. 본 논문에서는 다양한 파라미터의 상관관계를 도출하고 최근접 이웃 알고리즘을 적용하여 정상데이터와 비정상데이터를 분류한다. 두 분류의 결과는 발전 시스템의 결함에 의한 아웃라이어와 구름 등에 의해 단기간 동안 발생하는 부분 음영 및 전체 음영의 일시적인 전력손실을 보여준다. 100kW 발전소 데이터를 대상으로 머신러닝 분석을 수행하여 테스트 결과를 산출하였으며 실제 이상치와 이상치 후보지를 검증하였다.

목차

Abstract
요약
Ⅰ. 서론
Ⅱ. 본론
Ⅲ. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0