메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
서울대학교 인지과학연구소 Journal of Cognitive Science Journal of Cognitive Science 제21권 제1호
발행연도
2020.1
수록면
139 - 158 (20page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Being a notoriously complex problem, writing is generally decomposed into a series of subtasks: idea generation, expression, revision, etc. Given some goal, the author generates a set of ideas (brainstorming), which he integrates into some skeleton (outline, text plan, outline). This leads to a first draft which is submitted then for revision possibly yielding changes at various levels (content, structure, form). Having made a draft, authors usually revise, edit, and proofread their documents. We confine ourselves here only to academic writing, focusing on sentence production. While there has been quite some work on this topic, most writing assistance has mainly dealt with grammatical errors, editing and proofreading, the goal being the correction of surface-level problems such as typography, spelling, or grammatical errors. We broaden the scope by also including cases where the entire sentence needs to be rewritten in order to express properly all of the information planned. Hence, Sentence-level Revision (SentRev) becomes part of our writing assistance task. Obviously, systems performing well in this task can be of considerable help for inexperienced authors by producing fluent, well-formed sentences based on the user’s drafts. In order to evaluate our SentRev model, we have built a new, freely available crowdsourced evaluation dataset which consists of a set of incomplete sentences produced by nonnative writers paired with final version sentences extracted from published academic papers. We also used this dataset to establish baseline performance on SentRev.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0