메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
서울대학교 인지과학연구소 Journal of Cognitive Science Journal of Cognitive Science 제20권 제4호
발행연도
2019.1
수록면
451 - 503 (53page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
It was discovered in the literature (Lee 1978, 1999; Kiefer 1978, Őzyildiz 2017, Lee 2017) that the epistemic attitude report ‘know’ in Korean, Turkish, and Hungarian reveal factivity alternation and this rare phenomenon has been recently investigated also in such Altaic languages as Mongolian, Uyghur, Manchurian, and Azerbaijan, as first reported here. The attitude report ‘know’ in most languages so far known typically selects for a factive complement (Kiparsky and Kiparsky 1970, Hintikka 1975 a.o.). One generalization made is that nominalized complements tend to convey a factive reading, while non-nominal ones tend not to (Kastner 2015, Moulton 2015 a.o.). This work demonstrates that for a clause selected by a cognitive epistemic attitude verb to have a factive reading, it bears a nominal (D) feature with a structural case, whereas a clause for a non-factive reading, it does not, in alternation languages and possibly beyond. This work shows that a nominalized clause with the internal type ‘pro-fact’ noun –(u)n kes in Korean (and in Japanese as well with koto), witness-based, is factively presupposed by itself and contradicted if predicated by negated veracious adjectives in a veridicality test. It is embedded also by a doxastic verb such as mit- ‘believe.’ The non-factive alternants of ‘know’ in all the languages logically belong to the doxastic category of ‘believe’, though with implication of evidential justification in distinction with the real ‘believe,’ undergoing neg-raising, revealing their anti-rogativity. Thus, more weight is given to complements typing than to attitude reports typing.

목차

등록된 정보가 없습니다.

참고문헌 (41)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0