메뉴 건너뛰기
Library Notice
Institutional Access
If you certify, you can access the articles for free.
Check out your institutions.
ex)Hankuk University, Nuri Motors
Log in Register Help KOR
Subject

Tree Size Distribution Modelling: Moving from Complexity to Finite Mixture
Recommendations
Search

Usage

cover
Tree Size Distribution Modelling: Moving from Complexity to Finite Mixture
Ask AI
Recommendations
Search

Abstract· Keywords

Report Errors
Tree size distribution modelling is an integral part of forest management. Most distribution yield systems rely on some flexible probability models. In this study, a simple finite mixture of two components two-parameter Weibull distribution was compared with complex four-parameter distributions in terms of their fitness to predict tree size distribution of teak (Tectona grandis Linn f) plantations. Also, a system of equation was developed using Seemingly Unrelated Regression wherein the size distributions of the stand were predicted. Generalized beta, Johnson’s SB, Logit-Logistic and generalized Weibull distributions were the four-parameter distributions considered. The Kolmogorov-Smirnov test and negative log-likelihood value were used to assess the distributions. The results show that the simple finite mixture outperformed the four-parameter distributions especially in stands that are bimodal and heavily skewed. Twelve models were developed in the system of equation-one for predicting mean diameter, seven for predicting percentiles and four for predicting the parameters of the finite mixture distribution. Predictions from the system of equation are reasonable and compare well with observed distributions of the stand. This simplified mixture would allow for wider application in distribution modelling and can also be integrated as component model in stand density management diagram.

Contents

No content found

References (43)

Add References

Recommendations

It is an article recommended by DBpia according to the article similarity. Check out the related articles!

Related Authors

Recently viewed articles

Comments(0)

0

Write first comments.