메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한임베디드공학회 대한임베디드공학회논문지 대한임베디드공학회논문지 제14권 제5호
발행연도
2019.1
수록면
249 - 258 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In the cyber-physical system, big data collected from numerous sensors and IoT devices is transferred to the Cloud for processing and analysis. When transferring data to the Cloud, merging data into one single file is more efficient than using the data in the form of split files. However, current merging and splitting operations are performed at the user-level and require many I / O requests to memory and storage devices, which is very inefficient and time-consuming. To solve this problem, this paper proposes kernel-level partitioning and combining operations. At the kernel level, splitting and merging files can be done with very little overhead by modifying the file system metadata. We have designed the proposed algorithm in detail and implemented it in the Linux Ext4 file system. In our experiments with the real Cloud storage system, our technique has achieved a transfer time of up to only 17% compared to the case of transferring split files. It also confirmed that the time required can be reduced by up to 0.5% compared to the existing user-level method.

목차

등록된 정보가 없습니다.

참고문헌 (10)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0