메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한원격탐사학회 대한원격탐사학회지 대한원격탐사학회지 제36권 제2호
발행연도
2020.1
수록면
293 - 307 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
매년 황해와 동중국해에서는 대형 부유조류인 녹조와 갈조가 대량으로 발생하고 있다. 이러한 대형 부유조류는 연안의 양식 시설물이나 해변으로 유입되며, 제거하는데 막대한 경제적 손실을 발생시킨다. 현재는연안으로 유입되는 대형 부유조류를 탐지하기 위해 원격탐사 방법이 활발하게 사용되고 있다. 그러나 대형 부유조류는 해양의 다양한 대상들과 중첩되는 파장이 존재하기에 이를 정확하게 탐지하는데 한계가 있다. 더욱이 녹조와 갈조는 유사한 스펙트럼 특성을 보이기 때문에 원격탐사 자료를 이용한 구분을 더욱 어렵게 만든다. 따라서 본 연구에서는 위성 영상에 딥러닝 기법을 적용하여 녹조와 갈조를 효과적으로 구분하고자 하였다. 이를 위한 네트워크를 결정하기 위해 최적의 학습 조건을 찾아 AlexNet 신경망을 전이 학습하였으며, 학습과 검증을 위해 Gaofen-1 WFV 영상을 이용하여 데이터셋을 구성하였다. 최적의 학습 조건으로 학습된 네트워크를이용하여 실험 데이터에 대한 결과를 확인하였다. 그 결과 실험 데이터에 대한 정확도는 88.89%를 보였으며, 녹조와 갈조에 대해 각각 66.67%와 100%의 정밀도로 구분이 가능하였다. 이는 전이 학습된 AlexNet 신경망이녹조와 갈조의 미세한 차이를 구분할 수 있는 것으로 해석된다. 본 연구를 통해 해양의 다양한 대상으로부터녹조와 갈조를 효과적으로 분류하고 각각 구분할 수 있을 것으로 기대된다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0