메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한수학회 대한수학회지 대한수학회지 제57권 제4호
발행연도
2020.1
수록면
1,005 - 1,018 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
A characterization of the $C$-projective vector fields on a Randers space is presented in terms of ${\bf\Xi}$-curvature. It is proved that the ${\bf\Xi}$-curvature is invariant for $C$-projective vector fields. The dimension of the algebra of the $C$-projective vector fields on an $n$-dimensional Randers space is at most $n(n+2)$. The generalized Funk metrics on the $n$-dimensional Euclidean unit ball $\mathbb{B}^n(1)$ are shown to be explicit examples of the Randers metrics with a $C$-projective algebra of maximum dimension $n(n+2)$. Then, it is also proved that an $n$-dimensional Randers space has a $C$-projective algebra of maximum dimension $n(n+2)$ if and only if it is locally Minkowskian or (up to re-scaling) locally isometric to the generalized Funk metric. A new projective invariant is also introduced.

목차

등록된 정보가 없습니다.

참고문헌 (22)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0