메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한수학회 대한수학회논문집 대한수학회논문집 제35권 제2호
발행연도
2020.1
수록면
455 - 468 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
An element in a ring $R$ with identity is called invo-clean if it is the sum of an idempotent and an involution and $R$ is called invo-clean if every element of $R$ is invo-clean. Let $C(R)$ be the center of a ring $R$ and $g(x)$ be a fixed polynomial in $C(R)[x]$. We introduce the new notion of $g(x)$-invo clean. $R$ is called $g(x)$-invo if every element in $R$ is a sum of an involution and a root of $g(x)$. In this paper, we investigate many properties and examples of $g(x)$-invo clean rings. Moreover, we characterize invo-clean as $g(x)$-invo clean rings where $g(x)=(x-a)(x-b)$, $a,b\in C(R)$ and $b-a\in Inv(R)$. Finally, some classes of $g(x)$-invo clean rings are discussed.

목차

등록된 정보가 없습니다.

참고문헌 (24)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0