메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한수학회 대한수학회보 대한수학회보 제57권 제2호
발행연도
2020.1
수록면
407 - 417 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Let $(R,\mathfrak{m})$ be a $d$-dimensional Cohen-Macaulay local ring with infinite residue field. Let $I$ be an ideal of $R$ that has analytic spread $\ell(I)=d$, satisfies the $G_d$ condition, the weak Artin-Nagata property $AN_{d-2}^-$ and $\mathfrak{m}$ is not an associated prime of $R/I$. In this paper, we show that if $j_1(I) = \lambda (I/J) +\lambda [R/(J_{d-1} :_{R} I+(J_{d-2} :_{R}I+I) :_{R}{\mathfrak{m}}^{\infty})]+1$, then $I$ has almost minimal $j$-multiplicity, $G(I)$ is Cohen-Macaulay and $r_J(I)$ is at most 2, where $J=(x_1,\ldots,x_d)$ is a general minimal reduction of $I$ and $J_i=(x_1,\ldots,x_i)$. In addition, the last theorem is in the spirit of a result of Sally who has studied the depth of associated graded rings and minimal reductions for $\mathfrak{m}$-primary ideals.

목차

등록된 정보가 없습니다.

참고문헌 (19)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0