메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한수학회 대한수학회보 대한수학회보 제57권 제1호
발행연도
2020.1
수록면
207 - 218 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Some modular representations of reflection groups related to Weyl groups are considered. The rational cohomology of the classifying space of a compact connected Lie group $G$ with a maximal torus $T$ is expressed as the ring of invariants, $H^*(BG; \Q)\cong H^*(BT; \Q)^{W(G)}$, which is a polynomial ring. If such Lie groups are locally isomorphic, the rational representations of their Weyl groups are equivalent. However, the integral representations need not be equivalent. Under the mod $p$ reductions, we consider the structure of the rings, particularly for the Weyl group of symplectic groups $Sp(n)$ and for the alternating groups $A_n$ as the subgroup of $W(SU(n))$. We will ask if such rings of invariants are polynomial rings, and if each of them can be realized as the mod $p$ cohomology of a space. For $n=3, 4$, the rings under a conjugate of $W(Sp(n))$ are shown to be polynomial, and for $n=6, 8$, they are non--polynomial. The structures of $H^*(BT^{n-1}; \F_p)^{A_n}$ will be also discussed for $n=3, 4$.

목차

등록된 정보가 없습니다.

참고문헌 (21)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0