메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
G. Zhang (울산대학교) Y. S. Kim (울산대학교) Y. J. Yum (울산대학교) S. Y. Yang (울산대학교)
저널정보
유공압건설기계학회 유공압건설기계학회 학술대회논문집 유공압건설기계학회 2020年度 春季 學術大會 論文集
발행연도
2020.7
수록면
113 - 118 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In metal printing, repeated failures may occur due to the introduction of new equipment or workflow, unfamiliar manufacturing parameter adjustments, and manufacturing errors caused by lack of experience, resulting in insufficient technical accumulation. In addition, undesirable elements may be caused due to insufficient removal of unnecessary elements. By minimizing or optimizing these factors, the failure of trial and error can be reduced, and this failure can be largely eliminated by software simulation. This study was conducted to correct the SSF (strain scale factor) and ASC (anisotropic strain coefficient) factors to improve the accuracy of the simulation software in the additive manufacturing process of martensitic C300 powder materials. The study of this calibration follows the process of determining the SSF and ASC of ANSYS Additive Print software. Based on the previous research literature, the parameters (physical and mechanical properties) of the C300 powder material used for simulation were established, and the parameters of the equipment were used as the process parameters of the sample manufacturing equipment. The shape of the sample for simulation was made with a cantilever beam, and the sample was produced using PBF (Powder Bed Fusion) equipment of W company. The corrected SSF and ASC factors in this study improve the prediction accuracy of the deformation caused by the shape or thermal effect during the additive manufacturing of C300 powder materials and equipment in the simulation software, thereby will increasing the success rate of the additive manufacturing and, reducing the trial and error.

목차

Abstract
1. Introduction
2. Research method
3. Calibration of SSF and ASCs
4. conclusion
Reference

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-550-000877966