메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Dulan Sayassatov (Hanyang University) Namjae Cho (Hanyang University)
저널정보
한국데이터전략학회 Journal of Information Technology Applications & Management Journal of Information Technology Applications & Management Vol.27 No.3
발행연도
2020.6
수록면
19 - 36 (18page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The Internet of things (IoT) is a system of interrelated computed devices, digital machines and any physical objects which are provided with unique identifiers and the potential to transmit data to people or machine (M2M) without requiring human interaction. IoT devices can be used to monitor and control the electrical and electronic systems used in different fields like smart home, smart city, smart healthcare and etc. In this study we introduce four imaginary IoT devices as a learning support assistants according to students’ dominant learning styles measured by Honey and Mumford Learning Styles: Activists, Reflectors, Theorists and Pragmatists. This research emphasizes the association between students’ strong learning styles and a preference to appropriate IoT devices with specific characteristics. Moreover, different levels of IoT devices’ architecture are clearly explained in this study where all the artificial devices are designed based on this structure. Data analysis of experiment were measured by the use of chi square test for association and research results showed the statistical significance of the estimated model and the impacts of each category over the model where we finally got accurate estimates for our research variables. This study revealed the importance of considering the students’ dominant learning styles before inventing a new IoT device.

목차

Abstract
1. Introduction
2. Background
3. Data Analysis and Research Methodology
4. Study Results
5. Summary, Conclusions, Limitations and Future Implications
References

참고문헌 (30)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-005-000841708