메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Sungpill Choi (Korea Advanced Institute of Science and Technology) Kyuho Jason Lee (Ulsan National Institute of Science and Technology) Youngwoo Kim (Korea Advanced Institute of Science and Technology) Hoi-Jun Yoo (Korea Advanced Institute of Science and Technology)
저널정보
대한전자공학회 JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE Journal of Semiconductor Technology and Science Vol.20 No.3
발행연도
2020.6
수록면
255 - 270 (16page)
DOI
10.5573/JSTS.2020.20.3.255

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The 3D hand gesture interface (HGI) for virtual reality and mixed reality on smart mobile devices is strongly dependent upon the robust depth-estimation with low latency and power consumption. However, the conventional depth-estimation hardware such as active depth sensors and stereo matching accelerators cannot realize the always-on and natural 3D HGI on mobile platform due to their large power consumption from active depth sensors and computations as well as the massive external memory bandwidth, respectively. To resolve the limit, we propose a depth-estimation processor that realizes the always-on and natural 3D HGI with algorithm and hardware co-optimization. The processor features: 1) shifter-based adaptive support weight aggregation that replaces complex floating-point operations with integer operations to reduce power and bandwidth by 92.2% and 69.1%; 2) line streaming 7-stage pipeline architecture with aggregation pipeline reordering optimization to realize 94% utilization and 43.9% memory reduction; and 3) shifting register-based pipeline buffer optimization to reduce 29.8% area. The proposed depth-estimation processor realizes a real-time 3D HGI with 9.52 ms of latency under QVGA stereo inputs. It achieves external memory bandwidth reduction to 18.93 MB/s with 15.56 mW power and 2.8 mm² area, which are 4.1x and 6.9x more efficient than state-of-the-arts [9, 10], respectively.

목차

Abstract
I. INTRODUCTION
II. SHIFTER-BASED COST AGGREGATION
III. PROPOSED DEPTH-ESTIMATION PROCESSOR
IV. IMPLEMENTATION RESULTS
V. CONCLUSIONS
REFERENCES

참고문헌 (29)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0