메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Yeneneh Tamirat Negash (Asia University)
저널정보
대한산업공학회 Industrial Engineering & Management Systems Industrial Engineering & Management Systems Vol.19 No.2
발행연도
2020.6
수록면
398 - 411 (14page)
DOI
10.7232/iems.2020.19.2.398

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
For the quality characteristics described by linear profiles and with very low fraction defectives, the usual supplier selection strategies might not work because a sample of a sensible size most likely contains zero defectives. This study provided decision procedures and rules that are easy to implement based on the ratio test statistics. For the ratio test statistics, prior studies are restricted to two suppliers; in practice, more than two suppliers competing for an order is a standard. The Bonferroni correction method is employed to avoid error inflation due to multiple testing. The proposed method is compared with multiple comparisons with the best method. Tables of critical values and the number of profiles required are provided for practitioners. When comparing more than two suppliers, the proposed method provides useful information to rank suppliers and select the supplier with superior process capability. Furthermore, the statistical properties of the proposed method are investigated. A comprehensive simulation study is done to compare the power and the sample size requirement. The result suggests that multiple comparisons with the best method is superior in terms of power and sample size requirement. A real data set is collected from a computer producer to illustrate the applicability of the methods.

목차

ABSTRACT
1. INTRODUCTION
2. LINEAR PROFILES AND PROCESS YIELD INDEX
3. APPLYING RATIO TEST STATISTICS TO COMPARE MULTIPLE SUPPLIERS
4. MULTIPLE COMPARISONS WITH THE BEST (MCB)
5. COMPARISON STUDY OF RATIO VS. MULTIPLE COMPARISONS WITH THE BEST
6. ILLUSTRATIVE EXAMPLES
7. CONCLUSION
REFERENCES

참고문헌 (24)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-530-000879462