메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국산업경영시스템학회 산업경영시스템학회지 산업경영시스템학회지 제40권 제4호
발행연도
2017.1
수록면
112 - 119 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Selecting suppliers in the global supply chain is the very difficult and complicated decision making problem particularly due to the various types of supply risk in addition to the uncertain performance of the potential suppliers. This paper proposes a multi-phase decision making model for supplier selection under supply risks in global supply chains. In the first phase, the model suggests supplier selection solutions suitable to a given condition of decision making using a rule-based expert system. The expert system consists of a knowledge base of supplier selection solutions and an “if-then” rule-based inference engine. The knowledge base contains information about options and their consistency for seven characteristics of 20 supplier selection solutions chosen from articles published in SCIE journals since 2010. In the second phase, the model computes the potential suppliers’ general performance indices using a technique for order preference by similarity to ideal solution (TOPSIS) based on their scores obtained by applying the suggested solutions. In the third phase, the model computes their risk indices using a TOPSIS based on their historical and predicted scores obtained by applying a risk evaluation algorithm. The evaluation algorithm deals with seven types of supply risk that significantly affect supplier’s performance and eventually influence buyer’s production plan. In the fourth phase, the model selects Pareto optimal suppliers based on their general performance and risk indices. An example demonstrates the implementation of the proposed model. The proposed model provides supply chain managers with a practical tool to effectively select best suppliers while considering supply risks as well as the general performance.

목차

등록된 정보가 없습니다.

참고문헌 (23)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0