메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
유우식 (인천대학교) 김성재 (브이엠에스솔루션스) 김관호 (인천대학교)
저널정보
한국전자거래학회 한국전자거래학회지 한국전자거래학회지 제25권 제2호
발행연도
2020.5
수록면
15 - 27 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 연구는 일정계획을 위한 간트 차트(Gantt Chart) 생성과정을 세로로 세우면 일자형만 존재하는 테트리스(Tetris) 게임과 유사하다는 아이디어에서 출발하였다. 테트리스 게임에서 X축은 M개의 설비(Machine)들이 되고 Y축은 시간이 된다. 모든 설비에서 모든 종류(Type)의 주문은 분리 없이 작업 가능하나 작업물 종류가 다를 경우에는 시간지체 없이 작업 준비비용(SetupCost)이 발생한다는 가정이다. 본 연구에서는 앞에서 설명한 게임을 간트리스(Gantris)라 명명하고 게임환경을 구현 하였으며, 심층 강화학습을 통해서 학습한 인공지능이 실시간 스케줄링한 일정계획과 인간이 실시간으로 게임을 통해 수립한 일정계획을 비교하였다. 비교 연구에서 학습환경은 단일 주문목록 학습환경과 임의 주문목록 학습환경에서 학습하였다. 본 연구에서 수행한 비교대상 시스템은 두 가지로 4개의 머신(Machine)-2개의 주문 종류(Type)가 있는 시스템(4M2T)과 10개의 머신-6개의 주문종류가 있는 시스템(10M6T)이다. 생성된 일정계획의 성능지표로는 100개의 주문을 처리하는데 발생하는 Setup Cost, 총 소요 생산시간(makespan)과 유휴가공시간(idle time)의 가중합이 활용되었다. 비교연구 결과 4M2T 시스템에서는 학습환경에 관계없이 학습된 시스템이 실험자보다 성능지표가 우수한 일정계획을 생성하였다. 10M6T 시스템의 경우 제안한 시스템이 단일 학습환경에서는 실험자보다 우수한 성능 지표의 일정계획을 생성하였으나 임의 학습환경에서는 실험자보다 부진한 성능지표를 보였다. 그러나 job Change 횟수 비교에서는 학습시스템이 4M2T, 10M6T 모두 사람보다 적은 결과를 나타내어 우수한 스케줄링 성능을 보였다.

목차

초록
ABSTRACT
1. 서론
2. 합성곱신경망과 심층강화학습기반 일정계획
3. 성능평가
4. 결론
References

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-004-000660057