메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박근태 (한양대학교) 손채준 (한양대학교) 이윤상 (한양대학교)
저널정보
한국컴퓨터그래픽스학회 컴퓨터그래픽스학회논문지 컴퓨터그래픽스학회논문지 제26권 제2호
발행연도
2020.6
수록면
11 - 19 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
캐릭터의 자세가 변할 때 마다 캐릭터의 무게 중심(COM) 위치도 변하게 된다. 이 때 무게 중심의 위치 변화는 걷기, 뛰기, 쭈그려 앉기 등 다양한 동작 각각에 대응되는 독자적인 패턴을 가지므로 이를 이용하면 원래 동작의 정보를 알아낼 수 있다. 본 논문에서는 캐릭터의 무게 중심의위치 변화를 토대로 동작을 예측하는 모션 생성 기법을 제안한다. 이 방법을이용하면 무게 중심 정보를 통해 원래 동작의 유형에 대한 별도의 라벨 없이도 다양한 동작을 생성할 수 있다. 그러므로 네트워크의 학습및실행을위한데이터셋을만들때사람의손을거칠필요없이전처리를비롯한모든과정을자동으로진행할수있다. 본 논문에서제안하는신경망모델은캐릭터의모션이력(history)정보와무게중심정보들을입력받아현재프레임에서의포즈정보를 출력하며, 연속적인 시계열 모션 데이터를 다루기 위해 1차원 Convolution을 수행하는 간단한 형태의 Convolutional Neural Network(CNN)를 사용하여 학습되었다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 무게중심을 활용한 모션 생성 모델
4. 실험 결과
5. 결론
References

참고문헌 (22)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0