메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
황상원 (한국기술교육대학교) 김동우 (한국기술교육대학교) 이주환 (한국기술교육대학교) 강승우 (한국기술교육대학교)
저널정보
한국정보통신학회 한국정보통신학회논문지 한국정보통신학회논문지 제24권 제5호
발행연도
2020.5
수록면
584 - 590 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
일상생활에서 디지털 스크린을 오랜 시간 사용하면 눈의 피로, 안구 건조, 두통 등 컴퓨터 시각 증후군을 경험하게 된다. 컴퓨터 시각 증후군을 예방하기 위해서는 스크린 사용 시간을 제한하고 수시로 휴식을 취하는 것이 중요하다. 최근 스마트폰에서는 스크린 사용 시간을 알 수 있도록 도와주는 다양한 애플리케이션이 존재한다. 하지만, 사용자는 스마트폰 스크린뿐만 아니라 데스크탑, 노트북, 태블릿 등 다양한 스크린을 보기 때문에 이러한 앱만으로는 한계가 있다. 본 논문에서는 color, IMU, lidar 센서 데이터를 이용하여, 사용 중인 스크린 디바이스를 감지하는 머신 러닝기반 모델을 제안하고 여러 가지 모델의 성능을 비교한다. 성능 비교 결과 신경망 기반 모델이 전통적인 머신 러닝 모델보다 높은 F1 스코어를 보였다. 신경망 기반 모델에서는 MLP, CNN 기반 모델이 LSTM 기반 모델보다 높은 스코어를 보였으며, 전통적인 머신 러닝 모델에서는 RF 모델이 가장 우수했으며, 다음으로는 SVM 모델이었다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. 스크린 사용 디바이스 분류 모델
Ⅳ. 평가
Ⅴ. 결론
REFERENCES

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-004-000682471