메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
양현석 (Hanyang University) 한정훈 (Hanyang University) 문영식 (Hanyang University)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제25권 제5호(통권 제194호)
발행연도
2020.5
수록면
1 - 9 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 머리카락과 모자 영역의 마스크 정보를 활용하여 더 자연스러운 얼굴 속성 편집(facial attribute editing)을 수행하는 모델을 제안한다. 최신 얼굴 속성 편집 연구인 STGAN은 다중 얼굴 속성을 자연스럽게 편집하는 성과를 보였다. 그러나 머리카락과 관련된 속성을 편집할 때 부자연스러운 결과를 생성할 수 있다. 제안하는 방법의 핵심 아이디어는 기존 모델에서 부족했던 얼굴 영역의 정보를 모델에 추가로 반영하는 것이다. 이를 위해 세 가지 아이디어를 적용한다. 첫째로 마스크를 통해 머리카락 면적 속성을 추가하여 머리카락 정보를 보완한다. 둘째로 순환 일관성 손실(cycle consistency loss)을 추가하여 영상의 불필요한 변화를 억제한다. 셋째로 모자 분할 신경망을 추가하여 모자 영역 왜곡을 방지한다. 정성적 평가를 통해 제안하는 방법 적용 여부에 따른 유효성을 평가 및 분석한다. 실험 결과에서 제안하는 방법이 머리카락 및 얼굴 영역을 더 자연스럽게 생성하고, 모자 영역의 왜곡을 성공적으로 방지했다.

목차

[Abstract]
[요약]
I. Introduction
II. Related Works
III. The Proposed Scheme
IV. Experimental Results
V. Conclusions
REFERENCES

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0