메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Oh Kyoung Kwon (Inha University) Soobi Lee (Inha University) Hye Min Chung (Inha University) Prem Chhetri (RMIT University) Ok Soon Han (Incheon International Airport)
저널정보
인하대학교 정석물류통상연구원 Journal of International Logistics and Trade Journal of International Logistics and Trade Vol.17 No.4
발행연도
2019.12
수록면
89 - 102 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This study aims to evaluate the network robustness of major Asian airlines and to explore which airport types have the greatest impact on robustness. We also analyze airports’ specific brokerage roles and their impacts on the robustness of the entire air route network. We select 10 major Asian full-service airlines that operate the main passenger terminals at the top-ranked hub airports in Asia. Data is collected from the Official Airline Guide passenger route dataset for 2017. The results of the network robustness analysis show that Air China and China Eastern Airlines have relatively high network robustness. In contrast, airlines with broader international coverage, such as Japan Airlines, Korean Air, and Singapore Airlines have higher network vulnerability. The measure of betweenness centrality has a greater impact on the robustness of air route networks than other centrality measures have. Furthermore, the brokerage role analysis shows that Chinese airports are more influential within China and Asia but are less influential globally when compared to other major hub airports in Asia. Incheon International Airport, Singapore Changi Airport, Hong Kong International Airport, and Narita International Airport play strong “liaison” roles. Among the brokerage roles, the liaison role has a greater impact on the robustness of air route networks.

목차

ABSTRACT
1. Introduction
2. Data and methods
3. Analysis results
4. Conclusion
References

참고문헌 (38)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-324-000530768