메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
崔溵才 (長安大學校)
저널정보
중국어문학연구회 중국어문학논집 中國語文學論集 第119號
발행연도
2019.12
수록면
253 - 283 (31page)
DOI
10.25021/JCLL.2019.12.119.253

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this paper, I selected the research achievements of the dissertation papers related to Chinese language education and analyze the research trends of 20 years.
As such, we are going to utilize big data analysis methods to identify trends in research related to Chinese education in this paper. By utilizing big data analysis techniques, we want to understand the overall research trends of Chinese education-related dissertations published in Korea from 2000 to 2019.
To that end, the paper"s title, publication date and abstracts of the dissertation, which were searched as keywords, were used as analysis data for the main paper. In particular, abstracts was divided into English and Korean literature records, so they were collected by dividing them into English data and Korean data.
And I used one of the big data analysis techniques, the text mining technique, to extract key word words and explore the interrelated relationship between words through the n-gram analysis method.
In order to analyze the overall research trends of the 20 years of the dissertation on Chinese education and to identify the trend of change in research trends along the time stream, this paper divided the 20 years into four quarters in total and carried out the extraction of key keyword words for each quarter. And through keyword analysis we will consider the characteristics of Chinese education research in each era.
Finally, based on the above results, I discussed the direction of future Chinese education research and how to develop.

목차

1. 들어가기에 앞서
2. 연구 설계
3. 텍스트 마이닝 분석 결과
4. 분석 결과에 대한 심층적 논의
參考文獻
ABSTRACT

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-820-000344605