메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
최승호 (가천대학교) 이재복 (가천대학교) 김원호 (가천대학교) 홍준희 (가천대학교)
저널정보
한국에너지학회 에너지공학 에너지 공학 제28권 제4호 (통권 제100호)
발행연도
2019.12
수록면
82 - 93 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 연구에서는 기존 열수요 예측 시스템이 공휴일과 같은 특정 일자의 열수요 예측율이 저하되는 문제점을 개선하기 위해 새로운 모델을 제안한다. 제안된 모델은 사계절 혼합형 신경망 모델(Four Season Mixed Heat Demand Prediction Neural Network Model)로서 열수요 예측율 상승하였고, 특히 예측일 유형별(평일/주말/공휴일) 열수요 예측율이 크게 증가하였다. 제안된 모델은 다음과 같은 과정을 통해 선정되었다. 특정 계절에 예측일 유형별로 고른 오차를 갖는 모델을 선정하여 전체 예측 모델을 구성한다. 학습 시간의 단축과 과도학습을 방지하기 위해 구조적으로 단순화된 서로 다른 4개의 모델을 각각 학습한 후에 다양한 조합을 통해 최적의 예측 오차를 보여주는 모델을 선정하였다. 모델의 출력은 예측일의 24시간의 시간대별 열수요이며 총합은 일일 총열수요이다. 이 예측값을 통해 효율적인 열공급 계획을 수립 할 수 있으며, 목적에 따라 출력값을 선택하여 활용할 수 있다. 제안된 모델의 일일 열 총수요 예측의 경우, 전체 MAPE(Mean Absolute Percentage Error, 평균 절대비율 오차)가 개별 모델의 5.3~6.1%에서 5.2%로 향상되었고, 공휴일 열수요예측은 4.9~7.9%에서 2.9%로 크게 개선되었다. 본 연구에서는 한국 지역난방공사에서 제공한 특정 아파트 단지의 34개월 분량의(2015년 1월~ 2017년 10월) 시간단위 열수요 데이터를 활용하였다.

목차

요약
Abstract
1. 서론
2. 열수요 예측 단독 신경망 모델
3. 혼합형 신경망 모델
4. 결론
References

참고문헌 (8)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-572-000340097