메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
박도균 (평택대학교) 백주련 (평택대학교)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회 학술발표논문집 2020년 한국컴퓨터정보학회 동계학술대회 논문집 제28권 제1호
발행연도
2020.1
수록면
15 - 18 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
특정 영화의 스크린 독과점이 꾸준히 논란이 되고 있다. 본 논문에서는 영화 스크린 분배의 불평등성을 지적하고 이에 대한 개선을 요구할 근거로 머신러닝 기법을 활용한 영화 관람객 예측 모델을 제안한다. 이에 따라 KOBIS, 네이버 영화, 트위터, 구글 트렌드에서 수집한 3,143개의 영화 데이터를 이용하여 랜덤포레스트와 그라디언트 부스팅 기법을 활용한 영화 관람객 예측 모델을 구현하였다. 모델 평가 결과, 그라디언트 부스팅 모델의 RMSE는 600,486, 랜덤포레스트 모델의 RMSE는 518,989로 랜덤포레스트 모델의 예측력이 더 높았다. 예측력이 높았던 랜덤포레스트 모델을 활용, 상영관을 크게 확보하지 못 했던 봉준호 감독의 영화 ‘옥자’의 상영관 수를 조절하여 관람객 수를 예측, 6,345,011명이라는 결과를 제시한다.

목차

요약
I. Introduction
II. The Proposed Scheme
III. Conclusions
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-004-000272028