메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Wiharto (Universitas Sebelas Maret) Esti Suryani (Universitas Sebelas Maret) Murdoko Susilo (Universitas Sebelas Maret)
저널정보
한국지능시스템학회 INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGENT SYSTEMS INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGENT SYSTEMS Vol.19 No.4
발행연도
2019.12
수록면
323 - 331 (9page)
DOI
10.5391/IJFIS.2019.19.4.323

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Blood vessels in the retina of the eye are one important sign when making a diagnosis of hypertensive retinopathy. On the retina can be known several signs including tortuosity and arteriovenous ratio. Blood vessels mixed with a number of objects in the retina, the segmentation of blood vessels becomes a very interesting challenge because they have to separate blood vessels from a number of objects. This study aims to segmentation blood vessels using the main method of self-organizing maps artificial neural networks (SOMANN). The proposed segmentation method is divided into three stages, namely preprocessing, segmentation, and performance analysis. The preprocessing step is to improve image quality using the contrast-limited adaptive histogram equalization (CLAHE), median filter, and morphology. The segmentation stage uses the SOM-ANN algorithm combined with the mean or median thresholding. The performance parameters which are measured consist of sensitivity, specificity, and area under the curve (AUC). The test results using the dataset STARE and DRIVE show that the median thresholding is able to provide the best AUC performance compared to the mean thresholding. The proposed segmentation model is able to provide performance in the excellent category, with AUC values of 90.55% for the STARE dataset and 90.35% for the DRIVE.

목차

Abstract
1. Introduction
2. Methods
3. Analysis
4. Conclusion
References

참고문헌 (27)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0