메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Saidjalol Toshkhujaev (Chosun University) Goo-Rak Kwon (Chosun University) Yubraj Gupta (Chosun University) Ramesh Kumar Lama (Chosun University)
저널정보
한국통신학회 한국통신학회 학술대회논문집 2019년도 한국통신학회 추계종합학술발표회 논문집
발행연도
2019.11
수록면
58 - 61 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Recently, several high dimensional classification methods have been proposed to automatically discriminate between patients with Alzheimer"s disease (AD) and elderly controls (CN) based on T1-weighted MRI images. Moreover, many works have validated that multiple neuroimaging tools and biological biomarkers contain complementary information for early prognosis of AD. In this paper, we proposed an automatic classification by using multiple neuroimaging tools and finally combining them to classify AD vs HC. In total 180 subjects were downloaded from Open Access Series of Imaging Studies (OASIS) homepage, form which 90 subjects belong to AD and 90 subjects belong to (HC). We have used three types of feature extraction process which are NiftyReg, Freesurfer (6) and MALPEM (Multi-Atlas Labeled Propagation with EM refinement). For each image, we have extracted 246 Region of interest (ROI) using Brainnetome atlas using NiftyReg, 138 Region of Interest (ROI) using multi-labeled atlas in MALPEM and 68 regions using Freesurfer Destrieux atlas. According to KNN classifier result, multimodal feature achieved a good result for binary classification problem (AD and HC). Result, AUC of ROC for each of neuroimaging tools are 71%, 80%, 84% (NiftyReg, Freesurfer, MALPEM) and our method achieved 90% (AD and HC). Moreover, we have compared our result with the latest published state-of-the-art multimodal method.

목차

Abstract
I. INTRODUCTION
II. MATERIAL AND METHOD
III. EXPERIMENT RESULT
IV. CONCLUSION
REFERENCE

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-567-000084819