메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이윤상 (기상청) 최규용 (기상청) 김기훈 (기상청) 박성화 (기상청) 남호진 (기상청) 김승범 (기상청)
저널정보
한국기상학회 대기 대기 Vol.29 No.4
발행연도
2019.11
수록면
439 - 450 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (4)

초록· 키워드

오류제보하기
Present weather plays an important role not only for atmospheric sciences but also for public welfare and road safety. While the widely used state-of-the-art visibility and present weather sensor yields present weather, a single type of measurement is far from perfect to replace long history of human-eye based observation. Truly automatic present weather observation enables us to increase spatial resolution by an order of magnitude with existing facilities in Korea. 8 years of human-eyed present weather records in 19 sites over Korea are compared with visibility sensors and auxiliary measurements, such as humidity of AWS. As clear condition agrees with high probability, next best categories follow fog, rain, snow, mist, haze and drizzle in comparison with human-eyed observation. Fog, mist and haze are often confused due to nature of machine sensing visibility. Such ambiguous weather conditions are improved with empirically induced criteria in combination with visibility and humidity. Differences between instrument manufacturers are also found indicating nonstandard present weather decision. Analysis shows manufacturer dependent present weather differences are induced by manufacturer’s own algorithms, not by visibility measurement. Accuracies of present weather for haze, mist, and fog are all improved by 61.5%, 44.9%, and 26.9% respectively. The result shows that automatic present weather sensing is feasible for operational purpose with minimal human interactions if appropriate algorithm is applied. Further study is ongoing for impact of different sensing types between manufacturers for both visibility and present weather data.

목차

Abstract
1. 서론
2. 자료 및 방법
3. 결과
4. 요약 및 고찰
REFERENCES

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-453-000105950