메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Tae Hong Min (KT융합기술원) Hyeong Jin Shin (충북대학교) Jae Sung Lee (충북대학교)
저널정보
한국콘텐츠학회 한국콘텐츠학회논문지 한국콘텐츠학회논문지 제19권 제11호
발행연도
2019.11
수록면
278 - 287 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
공간 정보 추출은 자연어 텍스트에 있는 정적 및 동적인 공간 정보를 공간 개체와 그들 사이의 관계로 명확히 표시하여 추출하는 것을 말한다. 이 논문은 2단계 양방향 LSTM-CRF 앙상블 모델을 사용하여 한국어 공간정보를 추출할 수 있는 심층 학습 방법을 제안한다. 또한 공간 개체 추출과 공간 관계 속성 추출을 통합한 모델을 소개한다. 한국어 공간정보 말뭉치(Korean SpaceBank)를 사용하여 실험한 결과 제안한 심층학습 방법이 기존의 CRF 모델보다 우수함을 보였으며, 특히 제안한 앙상블 모델이 단일 모델보다 더 우수한 성능을 보였다.

목차

요약
Abstract
I. INTRODUCTION
II. Two-Step Bidirectional LSTM CRF Ensemble Model
III. Spatial Information Extraction
IV. Experiment
V. Conclusion
참고문헌

참고문헌 (28)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-310-000100395