메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Drought is a major abiotic stress in crop yield and its inevitable consequence is the increased production of reactive oxygen species (ROS) and cell damage. To reduce excessive ROS accumulation in soybean, AtYUCCA6 gene was transformed via Agrobacterium-mediated transformation. About 3% of transformation efficiency was generated from five batches of the transformation experiment. Eighteen transgenic plants were produced with PPT resistance and analyzed for introgression of AtYUCCA6. T-DNA insertion and expression were confirmed by PCR, Southern blot and reverse transcriptase-PCR. In the drought tolerance tests with transgenic lines #2, #3, and #5, all three lines were less affected by drought treatment and survived in the water-deficit conditions while non-transgenic plants did not survive under the same drought condition. The physiological aspects of transgenic lines were also much stronger than NT plants by showing higher chlorophyll content and lower ion leakage during water-deficit conditions (p < 0.01), indicating the prevention of cell-membrane damage. Measurement of transpiration rate on detached leaves from transgenic plants showed nearly 10% less water loss. Finally, 3 transgenic lines (#2, #3, and #5) were investigated for ROS accumulation by DAB staining of detached leaves under water-deficit conditions. Unlikely NT plants with severe dark browning after 14 days of drought treatment, transgenic lines #2, #3, and #5 did not show significant browning.

목차

등록된 정보가 없습니다.

참고문헌 (41)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0