메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한법의학회 대한법의학회지 대한법의학회지 제43권 제3호
발행연도
2019.1
수록면
97 - 105 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
We reviewed past studies on the identification of familial relationships using 22 short tandem repeat markers. As a result, we can obtain a high discrimination power and a relatively accurate cut-off value in parent-child and full sibling relationships. However, in the case of pairs of uncle-nephew or cousin, we found a limit of low discrimination power of the likelihood ratio (LR) method. Therefore, we compare the LR ranking method and data mining techniques (e.g., logistic regression, linear discriminant analysis, diagonal linear discriminant analysis, diagonal quadratic discriminant analysis, K-nearest neighbor, classification and regression trees, support vector machines, random forest [RF], and penalized multivariate analysis) that can be applied to identify familial relationships, and provide a guideline for choosing the most appropriate model under a given situation. RF, one of the data mining techniques, was found to be more accurate than other methods. The accuracy of RF is 99.99% for parentchild, 99.44% for full siblings, 90.34% for uncle-nephew, and 79.69% for first cousins.

목차

등록된 정보가 없습니다.

참고문헌 (22)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0