메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Rifaldy Fajar (Yogyakarta State University) Asfirani Umar (Yogyakarta State University) Nana Indri (Yogyakarta State University)
저널정보
대한종양외과학회 대한임상종양학회 학술대회지 대한종양외과학회 2021 Seoul International Symposium of Surgical Oncology [초록집]
발행연도
2021.6
수록면
171 - 171 (1page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Background/Aims
Breast cancer occupies the number one place for the growth of cancer in women. Breast cancer is a disease where there is excessive cell growth of breast cell tissue. However, some sources say the cause can only be marked in women who have risk factors such as having a history of tumors, menstruation too young or menopause above the age of 50 years, giving birth to the first child over the age of 35 years. Therefore, everyone must know the symptoms of breast cancer so that treatment can be done earlier based on that researcher interested in conducting research on the application of data mining algorithms in the diagnosis of breast cancer using the method of SVM (Support Vector Machine) and random forest, then each - the results of the classification method will be compared and conclude how accurate the SVM and Random Forest are in terms of accuracy.

Methods
The sample in the sample in this study is secondary data obtained from the calculation of digital computing from data on breast cancer patients at UCI Wiscoxsin University. The data can consist of Dependent and Independent Variables. For the dependent variable (Y) there are 2 categories namely Malignant and Benign where Maligant is Diagnosed with Malignant Tumors (cancer) and Benign is Diagnosed with Tumors. The^_@span style=color:#999999 ^_# ... ^_@/span^_#^_@a href=javascript:; onclick=onClickReadNode('NODE10593479');fn_statistics('Z354','null','null'); style='color:#999999;font-size:14px;text-decoration:underline;' ^_#전체 초록 보기^_@/a^_#

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-514-001919490