메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
영남수학회 East Asian Mathematical Journal East Asian Mathematical Journal 제35권 제2호
발행연도
2019.1
수록면
239 - 257 (19page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The purpose of this study is to show that the topology is closely related to some subjects learned in school mathematics and then to give motivations for learning of the topology. To do this, it is showed that the topology is an abstracted device that deal with structure of limit and continuity introduced in school mathematics. This study took a literature study. The results of this study are as follows. First, the formal definition of general topology to structure open sets was examined. The nearness relation together with the closure operation was introduced and used to characterize for construction of general topology. Second, as definitions for continuity of function, we considered the intuitive definition, definition, structured definitions using open intervals and definition using open sets and then we investigated their roles. We also examined equivalent definition using the nearness relation which is helpful to understand continuity of function. Third, the sequence and its limit are treated in terms of continuous functions having the set of natural numbers and its extended set as domains. From these, it can be concluded that the convergence of sequence and the continuity of function are identified as functions that preserve the nearness relation and that the topology is a specialized tool for dealing with convergence and continuity.

목차

등록된 정보가 없습니다.

참고문헌 (22)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0