메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국전기전자재료학회 Transactions on Electrical and Electronic Materials Transactions on Electrical and Electronic Materials 제11권 제5호
발행연도
2010.1
수록면
226 - 229 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Many methods exist that promote wound healing, including light therapy, which consists of light beams that assist the human body in treating and sterilizing wounds, as well as regenerating cells. Irradiation with specific wavelengths of either laser or LED light has been shown to induce beneficial proliferation of fibroblasts that, depending on the size of the wound, can be effective in promoting wound healing. The experiments in this study utilized 8 week old 250 ~300 g Male Sprague Dawley Rats (ILAR Code: NTacSam:SD) and included a non-irradiation group and a 525 nm green LED irradiation group (n of each group = 7). In experiments animals were allowed to rest for 24 hours after wounds had been excised, which was followed by non- irradiation or 525 nm green LED irradiation therapy one hour per day for 9 days. Immunohistochemical staining was conducted for cytokeratin in order to precisely measure the defect size. In addition, Masson’s trichrome staining was utilized in order to compare levels of collagen between the 525nm green LED irradiation group and the non-irradiation group. Animals exposed to 525 nm green LED irradiation (p 〈0.05) healed at a faster rate and had increased collagenosis compared with the non-irradiated control group. Thus,treatment with 525 nm green LED irradiation had a beneficial effect on wound healing and should be considered as a possible alternative to low power laser treatment.

목차

등록된 정보가 없습니다.

참고문헌 (18)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0