메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국환경영향평가학회 환경영향평가 환경영향평가 제19권 제2호
발행연도
2010.1
수록면
117 - 125 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Korea’s researchers have recently studied the prediction of forest change, but they have not considered landuse/cover change compared to distribution of forest vegetation. The purpose of our study is to predict forest vegetation based on landuse/cover change on the Korean Peninsula in the 2090's. The methods of this study were Multi-layer perceptrom neural network for Landuse/cover (water, urban, barren, wetland, grass, forest, agriculture) change and Multinomial Logit Model for distribution prediction for forest vegetation (Pinus densiflora,Quercus Spp., Alpine Plants, Evergreen Broad-Leaved Plants). The classification accuracy of landuse/cover change on the Korean Peninsula was 71.3%. Urban areas expanded with large cities as the central, but forest and agriculture area contracted by 6%. The distribution model of forest vegetation has 63.6% prediction accuracy. Pinus densiflora and evergreen broad-leaved plants increased but Quercus Spp. and alpine plants decreased from the model. Finally, the results of forest vegetation based on landuse/cover change increased Pinus densiflora to 38.9%and evergreen broad-leaved plants to 70% when it is compared to the current climate. But Quercus Spp. decreased 10.2% and alpine plants disappeared almost completely for most of the Korean Peninsula. These results were difficult to make a distinction between the increase of Pinus densiflora and the decrease of Quercus Spp. because of they both inhabit a similar environment on the Korean Peninsula.

목차

등록된 정보가 없습니다.

참고문헌 (33)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0